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SECTION 1

INTRODUCTION

Multiobjective optimization has recently been acknowledged as an advanced

design technique in structural optimization. Most of the real world problems are

multidisciplinary and complex, there are always more than one important objec-

tive function in the problem. In order to accomodate many conflicting design

goals, one needs to formulate the optimization problem with multiple objectives.

Formulation of a structural optimization problem consists of constructing a math-

ematical model that describes the behavior of a physical system encompassing

the problem area. The main task is the determination of the choice of the design

variables, objectives and the constraints. Sometimes only one dominating crite-

rion may be a sufficient objective for minimization. This is true especially if the

other requirements can be presented by equality and inequality constraints. But

generally the choice of the constraint limits may be a difficult task in a practical

design problem. These allowable values can be rather fuzzy even for common

quantities such as displacements, stresses, and natural frequencies. If the limit

cannot be determined, it seems reasonable to treat that quantity as an objective.



In addition, usually several competing and noncommensurable objectives ap-

pear in a real-life application, and thus the designer is faced with a decision

making problem where the task is to find the best compromise solution between

the conflicting requirements. Many methods have been developed to help the

engineer make the right decision in conflicting situations.

In the majority of the publications dealing with structural optimization the

objective, which should be minimized, has been the structural weight. In many

civil and mechanical engineering applications, the manufacturing cost may be

conflicting with the weight which does not reflect the total cost of the structure.

Accordingly, from the purely economic viewpoint the weight represents only the

material cost and therefore additional criteria are needed. When formulating the

mathematical optimization problem, the designer must consider which quantities

are suitable for measuring the economy and the performance of the structure.

Any quantity which has a tendency to improve or deteriorate is actually an

objective function in nature. Those quantities which should only satisfy some

imposed requirements are not objectives and can be treated as constraints. In

"a strict sense, almost all design quantities have a criterion nature rather than

"a constraint nature, because in the designer's mind they usually have better or

worse values. As an example of a strict constraint, the structural analysis equa-

tions (displacement, stresses etc.) can be mentioned. They represent equality

constraints, whereas regulations, space limitations, available materials and man-

ufacturing techniques impose inequality constraints. T-.us the designer is usually

faced with several conflicting and non-commensurable objectives in formulatirng
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the optimization problem. In order to reduce the computational and decision-

making effort it is desirable to decrease the number of the objectives as far as

possible by moving them into constraints.

A general multiobjecti-ve optimization problem is to find the vector of de-

sign variables X = (XI, X2, ... , ZN)T which minimizes a vector objective function

F(X) = (Fi(X),F2(X),...,Fq(X))T over the feasible design space X. It is the

determination of a set of non-dominated solutions (or Pareto optimum solutions,

noninferior solutions or efficient solutions) that achieves a compromise among

several different, usually conflicting, objective functions. The non-dominated

solutions form a set of solutions in which no decrease can be obtained in any

of the objectives without causing a simultaneous increase in at least one of the

objectives. This definition can be understood graphically. An arbitrary collec-

tion of feasible alternatives for a two-objective maximization problem is shown

in Figure 1.1. The area inside of the shape and its boundaries are feasible. The

axes of this graph are the objectives F 1 and F2 . It can be clearly seen from the

graph that the noninferior solutions are found in the portion of the bouadary

between points A and B. Thus, here arises the decision making problem from

which a partial or complete ordering of the set of non-dominated objectives is

accomplished by considering the preferences of the decision maker. Most of the

multiobjective optimization techniques are based on how to elicit the preferences

and determine the best compromise solution.
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1.1 Literature Review

A variety of techniques and applications of multiobjective optimization have

been developed in the past few years. The earliest work reporting the consid-

eration of multiple objectives in mathematical programming appears to be that

of Kuhn and Tucker (1951). Progress in the field of multicriteria optimization

was summarized by Hwang and Masud (1979) and later by Stadler (1984,1987).

Stadler inferred from his survey that if one has decided that an optimal design is

to be based on the consideration of several criteria, then the multicriteria theory

(Pareto theory) provides the necessary framework. In addition, if the minimiza-

tion or maximization is the objective for each criterion, then an optimal solution

should be a member of the corresponding Pareto set, for only then does any fur-

ther improvement in one criterion require a clear trade-off with at least one other

criterion. He also observed that in mechanics the most widely used technique

was goal programming. Bartel and Marks (1974) developed a method for ana-

lyzing optimum design problems with multiple, competing objective functions.

The technique provides a method for displaying the trade-off between two com-

peting design objectives over the whole range of the design space. The resulting

trade-off curve gives the designer the best possible choices for compromise de-

signs. The usefulness of this method was demonstrated by applying it to the

optimum design of hydrodynamic journal bearings. The competing objectives

were to minimize the oil film temperature rise and to minimize the oil flow rate

for the constant loading case. Duckstein (1984) listed about 13 possible sample

multiobjective techniques to show that a fairly broad choice of approach is to
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structural design is possible. Radford, .et.al. (1985) in their study have explored

the role of Pareto optimization in CAD. They used the weighting, NonInferior Set

Estimation Method (NISE), and the constraint method for generating the Pareto

optimal, and suggested some approaches using the emerging field of knowledge

based engineering to formalize the control and derivation of meaning from the

Pareto sets.

Rao (1984,1987,1988) has done a considerable amount of study on multiob-

jective optimization. In most of his research work goal programming and game

theory techniques were used. Rao (1984) studied the application of multiobjec-

tive optimization to structural design problems involving uncertain parameters

and random processes. The design of a cantilever beam with a tip mass subjected

to a stochastic base excitation was considered for illustration. The objectives in

the problem were to minimize structural mass, maximize the fundamental natu-

ral frequency and minimize fatigue damage time. He obtained numerical results

using a number of methods and concluded that the game theory approach was

superior in finding a better optimum solution with proper balance of the various

objective functions, even though the computation time was high compared to the

other methods discussed in his work. It was also observed that the optimum so-

lutions given by the various multicriteria optimization methods can be different.

Rao (1987) proposed a computational procedure for solving a general multiobjec-

tive optimization problem using cooperative game theory. He presented graphical

interpretations of the non-cooperative and cooperative game theory approaches

for a two-criteria problem. Later he and his co-workers (1988) formulated the
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design of actively controlled structures subject to restrictions on the damping

parameters of the closed-loop system as a multiobjective optimization problem

and solved it using goal programming techniques. The purpose of the control

was to effectively suppress structural vibrations due to initial excitation. The

structural weight and the controlled system energy were considered as the ob-

jective functions for minimization. Rao, et.al. (1988) formulated a combined

structural/control optimization problem and solved it as a multiobjective opti-

mization problem. The authors used the game theory approach for generating

the Pareto optimal. The computational procedure was demonstrated through

the design of two actively controlled truss structures. The two objective func-

tions used for the optimization were to minimize the weight of the structure as

well as the quadratic performance index. Rao (1988) considered the design of

vibration isolation systems using multicriteria optimization techniques. The two

performance indices taken as the objective functions were the integrated values

of the force transmitted to the main mass and the relative displacement between

the main mass and the base. He demonstrated the applicability of global crite-

rion, bounded objective, utility function, and game theory methods in the design

of a multicriterion vibration isolation system.

The multicriterion optimization of elastic stress limited isostatic trusses was

considered, and a numerical method (weighting method, constraint method, etc.)

for determining the Pareto optimal set of the problem was developed by Koski

(1982,1983). He discussed the basic principles of multicriterion optimization



and presented Pareto optima using the weighting as well as the minimax ap-

proaches (1981,1984). Hyperstatic trusses and plane frames were designed where

the weight and some chosen nodal displacements of the structure were taken

as design criteria. He also suggested that generating the whole Pareto set was

not economical, therefore to reduce the number of Pareto optima generated, one

could develop interactive algorithms where only a few Pareto optimal solutions

were generated. Later in (1984) he developed an interactive design method for

truss optimization. Koski (1987) proposed the norm methods based on the scalar-

ization of the original multicriterion problem by using the lp-norm method also

called the global criterion method. In addition, an alternative approach which,

instead of scalarization, reduces the dimension of the multicriterion problem was

proposed. He called this method the partial weighting method. Throughout the

article several illustrative truss examples were presented. In addition to interac-

tive multiobjective optimization methods Diaz (1987) proposed sensitivity anal-

ysis as a useful tool for information regarding trade-offs in the objectives. Hajela

and Shih (1990) proposed a minimum variant of the global criterion approach to

obtain solutions to multiobjective optimum design problems involving a mix of

continuous, discrete, and integer design variables. The method combined a dis-

crete variable variant of the global criterion approach with a branch-and-bound

strategy.

El-Sayed, et.al. (1989) demonstrated the formulation of the nonlinear goal

optimization problem and demonstrated the use of the method, as a design tool.
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Sandgren (1989) introduced a means by which uncertainty in the optimal de-

sign of structures could be considered. A goal programming formulation was

generated for a three-bar truss problem wherein uncertainty in both the load

magnitude and direction was considered. He demonstrated that nonlinear goal

programming could be a valuable tool for designing under uncertainty conditions.

Also this approach significantly reduces the complexity of the solution process.

Dhingra, et.al. (1989) presented fuzzy optimization techniques and summarized

their work as an useful tool during the initial stages of the conceptual design of

engineering systems where the design goals and the constraints have not been

clearly defined. Saravanos and Chamis (1990) developed a methodology for light

weight low cost composite structures of improved dynamic performance. Pre-

liminary applications on a cantilever composite beam illustrated that only the

proposed multiobjective optimization improved all objectives simultaneously as

opposed to single objective functions. Tseng and Lu (1990) proposed a minimax

multiobjective optimization model for structural optimization. They used the

three typical multiobjective optimization techniques, goal programming, com-

promise programming and the surrogate worth trade-off method, to solve truss

problems. The main purpose of their work was to apply the multiobjective op-

timization techniques to the selection of system parameters and to solve large

scale structural design optimization problems.

1.2 Types of Multiobjective Techniques

Pareto optimality serves as the basic multicriteria optimization concept in
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virtually all of the previous liter; ture. Pareto presented a qualitative definition of

the optimality concept for economic problems with several conflicting objectives.

The Pareto optimal is stated in simple words as, "A vector X* is Pareto optimal

if there exists no feasible vector X which would decrease some objective function

without causing a simultaneous increase in at least one objective function". These

solutions are also called noninferior solutions or non-dominated solutions.

Nearly all of the definitions of optimality in use for multiobjective optimiza-

tion involve some sort of scalarization of the vector optimization problem. That

is, the replacement of the vector problem by some equivalent scalar minimization

problem. Also the Pareto set is generally infinite. An additional use of scalariza-

tion is the selection of a unique member of the Pareto set as the optimum for the

vector optimization problem. Usually, a problem is scalarized either by defining

an additional super criterion function or by considering the criteria sequentially.

The basic three techniques used for generating noninferior solutions are: the

weighting method, the NonInferior Set Estimation method (NISE) and the con-

straint method. Balachandran and Gero (1987) have discussed the relative merits

and demerits of these three methods. These methods also come under the cate-

gory of nonpreference techniques. Although, one should note that some nonpref-

erence techniques use preference techniques concepts repeated over a number of

different parametric values to generate the entire Pareto set. Figure 1.2.1 shows

the procedure used in multiobjective optimization in structural optimization. In

the following sections these methods are briefly discussed with goal programming,

game theory, global criterion etc.

9



Weighting Method

This technique is based on the preference techniques of prior assessment of

the weights. It transforms the multicriteria function to a single criterion function

through a parameterization of the relative weighting of the criteria. The problem

can be stated as:

Minmizze
q

F(X) = L WkFk(X) (1)
k=I

subject to

gi(X) _ 0 i =1,2,...m (1.a)

It is usually assumed that

q
o _< w _, jW = J (Lb)

k--I

where X are the design variables, and W are the weights for each of the q ob-

jective functions. With the variation of the weights the entire Pareto set can be

generated. Since the results of solving an optimization problem can vary signifi-

cantly as the weighting coefficients change, and since very little is usually known

about how to choose these coefficients, a necessary approach is to solve the same

problem for many different values of weighting factors. However, since the shape

and distribution characteristics of the Pareto set are unknowns, it is impossible

to determine beforehand the nature of the variations required in the weights so

as to produce a new solution at each pass. The second important disadvantage

of the method is that it will not identify Pareto solutions in a nonconvex part of

10



the set. Still confr'onted with these Pareto solutions, the designer must choose

among them by some other means.

NonInferior Set Estimation (NISE) Method

The NISE method (Cohon, 1978) is an extension of the weighting method

with a mechanism for quickly converging onto the Pareto set. In addition, the

accuracy of the approximation can be controlled in the NISE method through

a predetermined error criterion, which is compared to the maximum possible

error at every iteration of the method. The NISE method operates by finding a

number of noninferior extreme points and evaluating the properties of the line

segments between them. For example if two noninferior extreme points have

been found, then the segment between them is feasible and it may or may not

be inferior. If the line segment is noninferior, then moving in a direction out

from the line segment is infeasible. If the line segment is inferior, then there are

noninferior points in the outward direction. Noninferior points are found in the

NISE method through the use of the weighting method.

Constraint Method

The constraint method is discussed in more detail, since Pareto solutions

are generated using this technique for a few examples in the report for compar-

isons with the proposed generalized compound scaling technique. The constraint

method is a technique which transforms a multicriteria objective function into a

single criterion by retaining one selected objective as the primary criterion to be

11



optimized and treating the remaining criteria as constraints. The multicriteria

problem is thus stated as:

Minimize

F,(X) (2)

subject to the constraints

F,(X) b, i = 2,3,...,q (2.a)

g,(X) 0 i = 1,2,...m (2.b)

and the side bounds on the design variables as

Ci _> zs(') i -- 1, 2,..., n (2.c)

where b, are parametrically varied target levels of the q - 1 objective functions.

Each vector, or constraint set, B of the various bi will produce one Pareto solution.

As in the weighting method, many different combinations of values for each bi

must be examined in turn to generate the entire Pareto set. The constraint

method provides direct control of the generation of members of the Pareto set

and generally provides an efficient method for defining the shape of the Pareto

set.

Multiobjective optimization that incorporates preferences is described below.

The commonly used methods under this are: goal programming, game theory,

global criterion, and the surrogate worth trade-off method.

12



Goal Programming

In goal programming the decision maker is required to specify goals for each

objective that he wishes to attain. Goals are the quantitative values, considered

as additional constraints in which new variables are added to represent deviations

from the predetermined targets. The objective function specifies the deviations

from these goals and priorities for the achievement of each goal, in quantitative

terms. Thus, the goal programming formulation of the multiobjective optimiza-

tion problem leads to:

Minimize
q

[• (di+ + di-)], p > 1 (3)
j=1

subject to

g,(X) >=-1,2,...,m (3.a)

Fi(X) - di+ + di- = bi, j = 1,2,...,q (3.b)

di+ >_ 0, j -- 1, 2,..-, q (3.c)

di- > 0, j 1,2,...,q (3.d)

where b, is the goal set by the designer for the jth objective, and di+ and di- are,

respectively, the under- and over- achievement of the jth goal. The value of p is

based upon the utility function chosen by the designer. Generally, p = 2 which

is an Euclidean metric value. The disadvantages of this method are the selection

of "correct" or "valid" levels of d+ and d-, i.e, which requires knowledge of the

individual minima of the objective function which is not easy to achieve with

nonconvex problems.

13



Game Theory

In game theory, the multiobjective optimization problem is viewed as a game

problem involving several players, each corresponding to one of the objectives.

The system is considered to be under the control of these intelligent adversaries,

each seeking to optimize his own gain at the expense of his opponents, using all

the available information. In this approach, starting with Xo as a starting point,

q single criterion optimization problems are solved to obtain optimum solutions

XiIi = 1,2,...,q. With the help of Xi* the elements of the matrix [P] are

evaluated as "FI(X,') F2(X,') ... Fq(X,'

Fi(X2,) F2 (X 2') ... Fq(X3)

[P)= (4.a)

FI(X,') F2(X,') ... F,(Xg*)

From this matrix the largest element of the i th column, Fi. is selected from each

column (worst value). Then a supercriterion or bargaining model S is constructed

as

S [Fi, - Fi(Xc*)] (4.b)

where X," represents the solution (Pareto optimal solution) of the following prob-

lem.

Minimize
q-i q-I

Fc(c,X) = • ciFi(X) + (1- F Fi(X)) (4.c)

14



subject to

gi > 0, i -- 1, 2,..., m (4.d)

ci 2! 0, i = 1,2,...,q- 1 (4.e)

q--1
i 5 1 (4.-)

The supercriterion S defined in Eq (4.b) is maximized,the optimal convex com-

bination of the objective functions is found, that is, c* and the corresponding

optimum solution of the problem X* = X,* is determined.

Surrogate Worth Trade-off Method

The surrogate worth trade-off (SWT) method is an interactive method, which

can be applied when the design variables are continuous and the objective func-

tions and constraints are twice differentiable. It assumes that the preference of

the decision maker is monotonic and can be exhibited as an implicit multiat-

tribute utility function as the decision maker systematically compares two objec-

tives at a time. The SWT method consists of three main steps. First, generating

a representative subset of non-dominated solutions called promising solutions and

obtaining the relevant trade-off information for each generated solution. Second,

interacting with the decision maker to elect the preference structure and finally,

selecting the best-compromise solution from the information obtained. Using

the constraint method the promising solutions and also the associated trade-off

information are generated. By using the concept duality theory, the Lagrange
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multipliers as well as the Kuhn-Tucker conditions, the trade-off functions T7, are

defined as
T _i = af,(X) (5.a)af(x)

or

Yi, = -Ai, (5.b)

Ai, is the generalized Lagrange multiplier associated with the ith constraint.

The trade-off Ai, represents the marginal rate of substitution between the ith

and fth objectives. Once the trade-offs have been identified, the decision maker

is supplied with the trade-off information to express his ordinal preference.

Global Criterion Method (min-max formulation)

In this formulation the optimum solution X* is found by minimizing a pre-

selected global criterion F(X) such as, the sum of the squares of the relative

deviations of the individual objective functions, from the feasible ideal solutions.

Thus X* is found by minimizing

q = F(Xi') - Fi(X) P (6.a)
Pm F,(X,)

subject to

) 0 i=,2,..., m (6.b)

where p is generally taken as 2, Xi*,i = 1,2, ... ,q is the feasible ideal solution of

the i th objective, and it is obtained by minimizing individual criterion.
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1.3 Scope of the Work

As shown from the description of the methods, there are various drawbacks

in using these approaches for solving large scale multidisciplinary optimization

problems with finite element based analyses. For example, many single objective

optimization problems have to be solved for generating the Pareto set in the

constraint method. Different weights have to be associated with the objectives

to obtain the Pareto set in the weighting method. In goal programming, game

theory, and global criterion methods individual minima's of the single objective

function are required which are difficult to obtain for a nonconvex problem.

Hence, it can be seen that multiobjective optimization can become computer

intensive while generating the Pareto optimal set.

This work proposes an algorithm ideally suited for multicriteria. optimiza-

tion. This algorithm is based on the generalized compound scaling (Venkayya,

1989-1991) method where the objectives are treated as similar to constraints. A

partial Pareto optimal set is generated by the algorithm. The computational cost

involved in this method is much smaller than the other methods discussed. This

is because in one optimization problem, possible Pareto optimums are generated.

The knowledge of individual minima's is not necessary for this algorithm, thus

opening a wide range of problems that can be solved using this technique. The

algorithm works well, because the optimal solutions lie on the active constraint

boundary for structural optimization problems whether the optimization is single

objective or multiobjective. In this work different objective functions (linear and

nonlinear) were used to show the robustness of the algorithm.
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This report is divided into many sections. The main sections being the finite

element formulation for the plate element, the sensitivity calculations for the ob-

jective functions and the constraints, the multiobjective optimization algorithm

with mathematical details, and numerical results with relevant discussions.
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NoninFerior Solutions

FeasiIote region
in object;ve space

Fig. 1.1 Graphical interpretation of Pareto Optimal
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Problem Formulation

Min [ f f(x) f 2 (x) fm (x) ]T

Generation of Pareto optima

Constraint Global Goal Game Surrogate Weighting
method Criterion Programming Theory worth method

method trade-Off

Decision making

Interactive Choice by A priori

methods comparisons fixed
parameters

Fig. 1.2.1 Classification of multicriterion structural design process
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SECTION 2

FINITE ELEMENT FORMULATION

This section discusses the finite element approximations used in the present study.

The choice of elements is dictated by the nued to perform accurate solutions for both

thin and thick plates. The finite element used for the plate bending elements is a four

noded , bilinear displacement element based on the Mindlin plate theory (Mindlin

1951). A reduced integration scheme is used to evaluate the element matrices.

This results in a rank-deficient element , and must be stabilized to achieve reliable

behavior.

The theory of single-point quadrature was introduced by Hughes, et.al. (1978)

and designated as U1. This element was attractive because of its simplicity, com-

putational efficiency, and high accuracy. However the U1 element is rank deficient

as this element cannot capture the bilinear contributions to the displacement fields

due to the single-point integration. Therefore, this element leads to some spurious

oscillatory displacements with very little strain energy associated with it. These

spurious singular modes in structural mechanics are called hourglass modes or zero

energy modes. Because of this a structure that appears adequately constrained may

yet have an instability that makes the [K] singular.
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The control method used to eliminate instability is by providing restraint with-

out stiffening the element's response to modes of behavior that are working well.

The method adds "hourglass stiffness" to an element integrated by one - point

quadrature. For a four noded bilinear rectangular plate element eight independent

displacement modes can be identified as shown in the Figure 2.1. The first three

are rigid body modes for which the strain energy is zero. The next three modes

are constant strain energy modes. Modes 7 and 8 are bending modes. An order

of one point quadrature does not sense these two modes, as the Gauss point is at

the center of the element and hence e. = e= -y =7v = 0 at the center. Accordingly,

the strain energy for these two modes is zero or almost equal to zero, hence the

element displays two mechanisms (Cook, et.al., 1989). Therefore to provide mode 7

and mode 8 with stiffness they lack under single-point quadrature, a "stabilization

matrix " is formed for each mode. These matrices contain constants which can be

chosen such that a rectangular element displays the exact strain energy in states

of pure bending (Belytschko and Tsay, 1983). These correction stiffness matrices

are added to the element stiffness matrix. For stress computations (especially shear

stresses) the one point quadrature technique is the most accurate.

The bilinear Mindlin plate (BMP) elements used in PROTEC (Brockman, et.al.,

1989) are based upon uniform reduced integration with rank corrections. The BMP

bending element uses single point quadrature. The rank correction scheme uses five

generalised hourglass strains to complement the proper null space of the reduced

integrated Mindlin plate gradient operator.
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2.1 Plate Element

In the Mindlin plate theory transverse shear deformation are also taken into

consideration. Therefore any point not on the midsurface is not governed by slopes

w,z and w,, but is governed by rotations 0. and 0. of lines that were normal to the

midsurface of the undeformed plate.

U = -zO0 CZ = -zO,.2 'fay = -Z(O,.V + O.,V)

S= -ZOY "y = -Z20,V 7,Z = Wy - Oy

'Tzz = WD - e

(7)

The state of deformation is described by generalized strains,

et = [(e.,myc,7,k,k,k.,,i'zv.zz'] (8)

and the stress state by generalized forces,

at = [Nz, N,, N.zy, Mz. My, M,2 , Qs,, Q1 ] (9)

In the stress-strain relationships for the in-surface strains and curvatures, plane

stress assumptions are used. For the bilinear plate element the shape functions are,

I
N, =:(s + ff + i7'v + hqf• (10)

Expanding the shape function one can write

Nl = 12(1 -3)(1 - 0)
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N2 = 1(1 + 7)(1 + (10.)

4
13 (lO.c)

N = +( - M)( + 4)

N= (1 (10.d)

In Eq (10) rigid body modes are denoted by

s9 = [I,1,1,1l] (11.a)

the nodal coordinates in the reference planes are,

4' = [-1,1,1,-1i (ll.b)

1/t = '-1,_i-i, 1I] (11.c)

and the hour glass modes are (see Figure 1.2 mode 7 and 8)

41 = [1, -1, 1, -1] (ll.d)

For the plate element the membrane strains from Eq (7) are given by

ex (12)

and the corresponding elastic matrix Dm is

[DE] 1 0 (13)
[Dns0 0 12&10

The bending and shear strains are based on the Hellinger-Reissnar variational prin-

ciple.
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Bending strains

k - ky (14.a)

Je (14.b)

Shear strains

•' yy = -8-- + o}(5

The bending elastic matrix Db is

t2

[Db] = -•[Dm] (16)

The shear elastic matrix Do is

[Do] = (5)2(1 0v)[1 ] (17)

where 1 is the shear correction for isotropic plates(Whitney, 1973). The linear

elastic relations take the form

(n) = ' - D- (18.a)

(M) - My•fi Dbk (8b

(q)= (':) = D.e. (18.c)
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The strain-displacement matrix evaluated at the center can be written as (Brock-

man, et.0L., 1989)

(b1T 0 0 C 0 0

0 b2 T 0 0 0 0
b2T b1T 0 0 0 0

0 0 0 0 b1T o
0 0 0 -b 2T 0 (19)
0 0 0 -b 1T b2T o
0 0 b1 T 0 1 8 T 0

o o ,2T =IST o C

In Eq (19)

b1 T = K[(Y2 - yi), (YS - YI),(Y, - YO),(Y1 - Y.)1 (20.a)

b2 T = [(x 4 - x3), (x - xS), (x2 - x.), (xs - x)I (20.b)

-C = 0 (at the center of the element).

8N (21.a)

2 N (21.b)

The element displacement vector

U, = [U,,, ,OGoo] (22)

The element stiffness matrix is

[K.] = J[BIT[D][Bldv (23)

K = BTDBAIJI (24)
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D is the elastic matrix of the element which consists of Di, Db, and D8 , A is the

area of the element and J is the jacobian. TheKe matrix is a ( 24 x 24 ) matrix.

The static equilibrium for the structure is

[K]U =P (25)

where K is the global stiffness matrix. From equation (25) the nodal displacements

are determined as

U = K-IP (26)

The Moment-Curvature relation from Eqs (18.a-c) yields the stress resultants which

are
Nx
N,
NzV

MX DEUe (27)

Afy/
QZ

where U. are the nodal displacements for the element.

2.2 Stabilization of the Stiffness Matrix

The plate element consists of twenty four degrees of freedom. Ignoring the 0z

degree of freedom the plate element consists of six rigid body modes , eight uniform

strain modes captured by the one point integration and six spurious zero energy

modes. The six zero energy modes have to be stabilized.
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The six rigid body modes are translations and rotations along the x, y,and z

axes. The hour glass modes can be represented by eqn(il.d). The six spurious

modes consist of five hourglass deformation patterns

u = h,v = h,w = h,e2 = h,OV = h (28)

The sixth spurious mode cannot exist when a mesh of two or more exist.

To control the kinematic modes, generalized strains are defined which get acti-

vated during the zero energy modes and vanish for rigid body modes. Belytschko

and Tsay (1981,1983) defined generalized hourglass strains associated with each

component of displacement and rotation. These are defined as follows.

qj = 7 Tu, q2 = 7 Tv, q3 = 7Tw, q4 = yTex, q5 = /TO91.

where

- [h Tb 1 + hTyb2j (29)

Equation (29) is valid because of the orthogonality conditions. The generalized

hourglass stiffness associated with the modes described in Eq (28) are

1

El ) 1

A O.1EtA 0(E3 = 1(30)E4 ,

t2

These stiffnesses are added to the original stiffness matrix.
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2.3 Mass Matrix Formulation

In static problems the stabilization scheme mentioned (Brockman, et.al., 1987)

works perfectly, giving good element behaviour. In dynamics, however, low-energy

deformation patterns consisting mainly of hourglassing motions represent likely

modes of low-frequency oscillations. These low frequency oscillations contaminate

the vibration spectrum which is of the most interest.

This can be shown by the following method. Given a vibration mode shape d -

4, the generalized stiffness and mass associated with the mode are the projections:

k = 4tK4 m = tMI (31)

and the corresponding frequency of vibration is

w = (32)

Since the hourglass modes are orthogonal to the constant strain modes and rigid

body modes, the stiffness associated with these modes depends solely on the hour-

glass stiffness which is deliberately made small to avoid locking problems. But at

the same time the kinetic energy associated with these unstable modes is similar in

magnitude to that associated with the rigid body and uniform state motions. This

is because the orthogonality conditions are no longer existing while calculating the

kinetic energy of the system. Consequently artificial vibrations modes appear in the

element spectrum , intermixed with the lower fundamental frequency modes which

are commonly of interest.
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Hence during the mass matrix formulation ,he mass matrix has to be corrected

by reducing or eliminating the kinetic energy associated with unstable modes of the

element, while leaving the energy associated with rigid body motions and uniform

strain states unchanged (Brockman, et.al., (1987)).

For the mass properties of the bilinear element

(RI,R 2, R3 ) AJ p(1, z, z 2 )dz (33)

and

H = NNtdA (34)

The kinetic energy

T = [jl + ) + 2R 2 (igi - i;i,) + R 3 (9i !- IF)]dA (35)

The consistent mass matrix formulation is as follows from Eqs (33,34):

(RIH 0 0 0 R2 H \
0 RIH 0 -R 2H 01

M =(0 0R2  R1 H 0 03 H (36)
0 0 R 3 H 0

Assuming a constant Jacobian determinant the above equation reduces to

3 ;) (37)
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Consistent Mass via the Projection Method

The kinetic energy of the hourglass modes is relatively large compared with the

hourglass stiffness used for stabilization. Hence the mass matrix is formulated as

follows, considering the kinetic energy associated with the in displacement u:

. = 2 dA (38)

We have to eliminate the kinetic energy associated with that part of the velocity

field which is ignored by the single point integration of the element stiffness, and

then, expand the velocity field il(x,y) about z = y = 0. Hence

it(z)= ik(O,0) + xi(z) + ys,+(z,Y) + (39.a)

or

I A• + z(biti) + Y(bWit) + V/ (7 ti&) (39.b)
4

Modifying the kinetic energy based on the purely linear part of the velocity field,

that is, keeping only the linear terms from Eq (39.b)

) + z(bit ii) + y(b2
tWi) (40)

gives

2. [fR, 1 yb)(-a + zb1 + yb2) dA]J (41)T, 2 Au Q 11( + WbI + b)4

As with the stiffness computation , the jacobian determinant is a constant

NdA = J -(.9 + f + iY + h•i)&ddC = IJIs (42)
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If the center of the element is z = y = 0 then

IAxdA= j N'xdA = IJI(s tx) = 0 (43)

and hence terms linear in x or y do not survive the integration.

LAXIdA = xHx = c.. (44.a)

JAy2dA = y t Hy = cy (44.b)

IXY'dA = xt Hy = % (44.c)

Therefore the kinetic energy

T, = -Ri•,k 1i • (45)

in which

A -ss + cbib 1 ' + cyyb 2 ba' + cy(bib2 ' + b2bit) (46)

by performing a similar linearization of all displacements and rotation components,

H is replaced by H1. It is evident that the kinetic energy associated with all the

five hourglass modes is identically zero. And hence modes consisting primarily of

hourglass motions should not appear as spurious low-energy vibration modes. The

mass matrix obtained by projection onto a linearized velocity field is positive semi-

definite, since zero kinetic energy is associated with all pure hourglass patterns.

This mass formulation is valid for plate bending alone, since the singular modes

of the mass matrix coincide precisely with those of the stiffness. The projected

mass matrix yields the proper energy for all eight elementary states and zero for

the hourglass modes. The mass obtained by single point quadrature leads to a

proper energy only for the translational rigid body modes. Based on this, a single
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point quadrature is used for inplane motions, and the projection method for the

transverse displacements and rotations.

(RIH(1) 0 0 0 R 2 H1
0 RIH(1) 0 -R 2 H 0 (

Mop, 0 0 Ri 0 (47)
0 -R 2H 0 R3H 0

R2H 0 0 0 R3k

where the element is sampled at the element centroid, N i •s. Therefore,

H(I) (48.a,)

A 1 1 1 1 (48.b)=i-'6 1 1 1 1
(1 1 1 1)

The semi property of the single-point-integrated mass and the projection mass ma-

trix appears to present a potential source of difficulty in some methods of eigenvalue

extraction, such as subspace iteration. But the subspace projection of the mass will

remain positive definite unless one or more trial vectors correspond precisely to a

global deformation mode which is free of kinetic energy. This situation is highly

unlikely.
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SECTION 3

SENSITIVITY ANALYSIS

This section describes the calculations of sensitivity information for the system by

the direct method. The sensitivity parameter of interest is the thickness of the plate.

The optimization of structures under static loading typically requires derivatives of

displacement or stress constraints. Because element stresses may be easily written

as explicit functions of the nodal displacements, a general form of the constraint is

g(u,t) > 0 (49)

In Eq (49) u is the displacement vector and t is the design variable. The derivative

of g with respect to the design variable t may be written as

dg = + du (50)
at -i 8 dt

where Z is a vector such that a

The first term in Eq (50) is usually zero or very easy to obtain, so the compu-

tation of the second term is discussed below.
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3.1 Displacement Constraints

The static equilibrium for the structure is

[KIU=P (51)

where K is the global stiffness matrix and P is the load vector. Differentiating Eq

(51) with respect to the design variable t we get

-U=K- 1 T-OP-KU) (52.a)

For load P not varying with thickness the above equation becomes

U = _-U)(52.b)

Premultiplying Eq (52.b) by ZT we obtain
ZTDU ZTK- 1 (-_tU) (52.c)

This above equation is solved once for each design variable. Let

-MKu = -K'U (53)
at

we know

K = BTDB (54)

therefore

K' = BTD' B (55)

as only the D matrix contains t. Therefore

K'U = BTD BU (56)
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or

K'U BTa; (57)

where
N

t

t

AN,

e=A t(58)

t

t

3.2 Stress Constraints

Once the solution for U' is complete from Eq (52.c) the stress sensitivities can

be obtained from the following sequence. The stress derivative is derived element

by element.

=DBU (59.a)

=D'BU + D.BU' (59.6)
Tt
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3.3 Frequency Constraints

In the natural frequency solution, the applied forces are set to zero and all the

displacements are assumed to vary sinusoidally in time.

U = XSin(wt) (60)

The resulting discrete equations of motions become:

KX = AMX (61)

where A = w2 . This symmetric generalized eigenvalue problem is solved using the

subspace iteration algorithm.

Mass matrix sensitivity calculations, as required in the sensitivity analysis of natural

frequencies, are simple in form.

We have

KU - w2 MU (62)

The Rayleigh quotient gives

UT )KU, (63)
j u, T MU,

where j = eigenvalue and U, is the jth eigenvalue mode.

Differentiating

wi ' =UTMUIT(UTK'Ui) -_ UTKU,(UTMU,) (64.a)

at (UT.AfU,)3
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Ow, = (UT K'U) - W, I(UjT MU,) (64.b)
Ot 2wjUTMU,

- UT[KI-wj2M'JUj (64.c)
-Q(UjTMUj)

for the jth mode of vibration.

The denominator is a scalar multiple of the generalized mass for the mode j,

which can be calculated at the system level. The product UTK'UU is calculated

element by element and then assembled globally. The same is the case for the mass

matrix sensitivity.

Concentrated mass added at each node will not affect the sensitivity calculation

of the mass matrix, as the concentrated mass value is a constant. The total mass

M = M. + M, where M. is the mass due to the structure and M. is the mass due

to the concentrated mass.

Differentiating

M a_.m [ = M + Me] (65.a)
at at

_ OM i (65.a)

at at

where

8[M] =0 (65.c)
at

Hence the concentrated mass does not have any affect on the mass sensitivity. Mass

M is denoted as

M =JV RNNTIJIdV (66)
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were R is a function of the element density and thickness. As R is a constant for

an element, it can be taken out of the ;ntegral. The element mass matrix can be

differentiated with respect to the thickness easily.

Typical procedures for system level solution are outlined, assuming that element-fl

level routines are available for evaluating the vectors K'U and M'U, and the scalar

products UTK'U and UTM'U as required. For the eigenvalue problem, for each

design variable and mode, the frequency sensitivity can be summed element by

element.

,N,11
= [UTK'U _ w 2 U3TMU3 l (67.a)

2 wimjIe=1

m, = UTMU, (67.b)

(j is not summed)
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SECTION 4

OPTIMIZATION ALGORITHM

This section discusses the development of the scaling algorithm and presents the

algorithm for multiobjective optimization with a discussion on reliability calcula-

tions which are used for selecting the best compromise design.

The algorithm proposed is based on optimality criteria methods (Venkayya,

1986). The optimality criteria method has the potential to extend optimuzation

to problems with thousands of variables and constraints. One of the significant

elements of the optimality criteria method is the concept of scaling. Scaling im-

plies changing the variables with the objective of reaching the constraint boundary.

The design variables can be brought to the constraint boundaries either by adding

differential quantities or by multiplying the variables by scale factors. The lat-

ter is called scaling. This procedure was originally proposed for constraints which

could be scaled in a single step. Later it was generalized for nonlinear functions.

In both cases, however, a simple scaling algorithm was used, and it was adequate

for structural optimization problems. In simple scaling a dominant constraint can

be identified, and scaling with this constraint generally brings the design variables

into the feasible region. This is not necessarily the case in general mathematical
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optimization problems, and a compound scaling is necessary in order to extend

the scope of the optimality criteria method. Another significant element of the

optimality criteria method is modification of the variable vector at the constraint

boundary by directly invoking the optimality as defined by the Kuhn-Tucker con-

ditions. The new techniques which were developed for multiobjective optimization

based on scaling are discussed in Section 4.2. The following sections explicitly

discuss the development of the scaling algorithm.

4.1 Development of Scaling Algorithm

The first objective of scaling is to bring all the violated constraints to the feasible

region or to the constraint boundary. If all the constraints are in the feasible

region, then scaling can be used to bring some of the constraints to the constraint

boundary. The mathematical basis for scaling can be derived from the first order

approximation of a Taylor's series (Venkayya, 1971, 1986).

4.1.1 Scale Factor Derivation for Simple Scaling

Simple scaling is done with respect to the most prominent constraint (Figure

4.1.1.1) The scaling procedure can be explained with the help of two designs rep-

resented by the two variable vectors z and f. The relationship between the two

variable vectors is given by

'ff Ax (68)
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where A is a single scalar parameter which will be referred to as a scale factor.

(A > 0). If dx is the difference vector between the two designs, then one can

Write

d = x- = (A - 1)x (69)

Also if g and 4 are the response quantities respectively in the two designs, then

a change in response can be represented by

dg =§-g (70)

Now from the definition of the total differential ( first order approximations of

the Taylor's Series) the following relationship can be written

dg = •-Lg~dx + •-L 2d + ... + ±g-- dzx, (71)

Then dg can also be written as (from Eqs 69 and 71)
n

dg = (A - 1)ZNilxx (72)

where Ni1 = l. Dividing Eq 72 by g we have,

dg N N, Iave,d = (A - 1)E j:N (73)
g i=1 g

An examination of Eq 73 presents two interesting cases.

Case 1:
< 0 (74)

ilg

In this case a new parameter u is defined as

AjN = - NE1I 1  (75)
i=1 g
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Then Eq 73 can be written as

dgdg _ A ) PN (76)

Now the scale factor A can be written as

A= -!dg 1 = t - b (77)
9 /.AjN

where

b=1 dg b<< 1 (78)
ASN g

Equation 77 can be written as

1 1 + b (79)
A 1-b

by neglecting the higher order terms of b in a binomial expansion. Now - can be

written as
dg = IN _ AiN (80)
g A

Adding 1 to both sides of Eq 80, one can write

g+dg =/ jN _ N+ (81)

A new parameter, t3, which will be referred to as the target response ratio, is defined

as

(82)
g

Then

A 1_ + (83)
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Solving for the scale factor A

A = jN (84)
A +I•,N-1

This scaling technique was originally developed by Venkayya (1971), without la-

belling various terms as/8 and p parameters. Nevertheless, the concept has been in

use for the last two decades. Substituting A, p and expressions, we get

A = - ,,(85)Y-F 8 M=,i - 9

E - Xi -(86)
z A

g + --- z(l-) (87)

ag x
Og (jL (88)

24

Equation 88 is the reciprocal approximation used in mathematical programming

techniques, which is

g._+E .g .(Y, - z( ) (89)

This is the form Schmit and Farshi presented in 1974 as the reciprocal constraint

approximation, which is a very popular technique.

Case 2:

>N,, 0 (90)
g

Now the parameter Pip is defined as
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Then the scale factor A can be written as

A - 1 3 +$jp -1 (92)
/ijP

Decoding the above equation (92) we get

A (93)

= • E•.X,-g (94)

Simplifying

() + 9(z) +- •-zi(, - 1) (95.a)

S09g (9.b
= g(.) + -u(g , - ',) (95.b)

the above equation is the linear approximation used in mathematical programming

techniques (Schmit and Farshi, 1974).

An examination of Eqs 84 and 92 reveals some interesting facts:

1. In Case 1 the scale factor is inversely proportional to the target response ratio,

and in Case 2 it is directly proportional to P.

2. The response of the system, 9, and the response, Nil can be determined from

an analysis of the system for a given variable vector z. The target response (or

desired response) can be determined from the constraint definition. Then the

target response ratio /, and the parameter is are known. Then the scale factor

A can be determined explicitly for any type of structure and constraints.
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4.1.2 Compound Scaling

In compound scaling, scaling is done with respect to multiple constraints Figure

4.1.2.1. The scale factors derived from the first order approximations of a Taylor's

series Eqs 84 and 92 represent an interesting generalization for nonlinear functions.

A formula involving linear and nonlinear interaction was written by Venkayya (1989)

in which it was stated that, when the constraint is nonlinear the scaling formula

can be represented by
1

A a ( )M (96)

where the parameter m is a measure of nonlinearity.

The basis for generalization of the scaling algorithm can be established by ex-

amining the i and P3 parameters of two simple constraint functions.

gl= LI + L2 +..+ !I _<• y-
91 - 1(97)Ml X2 On

g 2 = CUTI + C2T2 + ... + Cn-n _ T2 (98)

where Z, 9 2, ... , z,7 are the variables and ci, c2, ... , cn are a set of positive constants.

The A parameters in these two cases are defined as

PIN ==I (99)
i=, 91

"2P = N- (100)

i=1 92

The measure of nonlinearity in both cases is 1, and it represents the linear case.

The parameters P are defined as

(101)
91
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02 - 92 (102)
92

It is easy to show that the exact scale factors in these two cases are simply

1
AIN =•1 (103)

A2p = 32 (104)

The first condition represents Case 1, and the second represents Case 2 in the

simple scaling technique discussed earlier. A similar examination was made of two

nonlinear functions

Cl C2 + + n
1 -- L _ + .. (105)W1M W2 r Znm -

92 = Clolm + C2M2m + ... + Cnn < F'2 (106)

The i parameters for these two cases are

/IN = m (107)

/A2P =m (108)

The measure of nonlinearity in these two cases in m. It is easy to again show that

the exact scale factors for these two cases are

AIN--( A) (109)

A2p = (Y2)0-' (110)

For constraints with both linear and nonlinear terms it can be shown that

1 < m (111)
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The scale factors given in equation 109 and 110 are far superior approximations than

those given in Eqs 84 and 92. However, they are not exact when the summation in

the A parameter definition contains both positive and negative terms. In such cases

two scale factors are defined for each constraint. These correspond to Case 1 and

Case 2 discussed earlier. For example, the two scale factors for the jth constraint

can be defined as

AN = 1 (112)

Aip = Vp (113)

The definition of PIjN and pip in Eq 112 and 113 is as follows:

P3 N - -- • N . (114)
,=I 9j

and

where Eq 114 contains only negative terms and Eq 115 contains only positive terms.
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4.1.3 Constraint Approximations

The conservative approximation used the above concept in building the approx-

imate function. The constraint approximation is defined as (Starnes and Haftka,

1979)

=j - gi + (Ai - 1)E Niz i Gi (116)

where

1 Nijiz < 0 (117.a)

G0 = 1 Njiz, > 0 (117.b)

Dividing Eq 116 by g#

-- I -+ (Ai - 1)E N G, :, (118.a)
9j i=1 gj

S= 1 + (Ai - 1)#jG (118.b)

If jq is positive, then it becomes Ijip and Gi becomes 1. Therefore

= 1 + (Aip - 1)pip (119.a)

and

Aip = /j + jP - 1 (119.b)
Pip

which is the same as the general equation derived for nonlinear constraints given

in Eq 113 (when /jp is equal to 1). If jp is negative, then it becomes /jN and Gi

becomes 1 _. Therefore

= 1+ (AjN - 1)(-/AJN)(-- (120.a)

and

AN Aix (120.b)A 0 / + IAjX - 1

which is the same as Eq 112 (PjN is equal to 1).
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4.2 Mutiobjective Compound Scaling (MCS) Algorithm

Multiobjective optimization was solved by modifying the generalized compound

scaling algorithm (Venkayya, 1991) for multiobjective optimization problems. This

technique generates a partial Pareto optimal set. For a multiobjective problem

there exists several Pareto optima. Since the determination of all the Pareto optima

of a multiobjective problem is computationally expensive, a subset of the Pareto

optimal points is sufficient for finding the solution. As stated by Rao (1988) and

observed by many other researchers the optimum solution generated by the various

multicriteria optimization methods can be different from each other, hence a solution

concept or procedure should be defined on the basis of other attributes such as the

mathematical basis of the method, its generality and the quality of the final solution.

Keeping this in mind the generalized compound scaling algorithm for multiobjective

or vector optimization is built.

The MCS algorithm is based on scaling techniques. The basic idea of any scaling

algorithm being to derive a set of scale factors for the variables such that the design

can be brought to the constraint surface in one or more steps from anywhere in the

n-dimensional design space by multiplying the current values of the variables and

the scale factors. The implication being that the optimum lies on the constraints

surface or intersection of the constraints. To generalize the scaling technique the

objective functions are also treated as additional constraints, as both the constraints

and the objective function are functions of the same variables. In multiobjective

optimization it is well known that the Pareto optimal set lies on the intersection of

the objective functions contours, hence treating the objective functions in the same
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way as the constraints seems a logical approach. So once an optimum constraint

surface or intersection of constraint surfaces is reached, the MCS technique tries to

reduce one of the objective functions depending on the objective function gradient

information. The difficulty in treating the objective functions as constraints is

that the constraints have a target to satisfy and the objective functions do not.

Hence to make the objective functions look like constraints, pseudo target values

for the objective functions are generated so that they can be treated as additional

constraints which intersect other constraints. Linear as well as nonlinear objective

functions were considered to demonstrate the robustness of the algorithm.

Multicriteria Problem

The problem of multiobjective optimization subject to multiple constraints can

be posed as:

Mlini * e

F = [Fi(x),F2 (x),...,Fq(x)] (121)

subject to the constraints

g j ( 2 1 ,i , ' ",... ) --< ) j -- 1 ,2 , . .. ,o . ( 1 2 2 .a )

gA--I' -2, ... ,.,,) = 0j j + 1, ... ,M. (122.b)

and the side bounds on the design variables as

>. (123)
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where F are the conflicting objectives to be minimized, q is the total number of

objectives, n is the number of design variables and m is the total number of con-

straints.

MCS Algorithm

The technique makes use of the active set constraint strategy hence reducing

the computational effort considerably (Venkayya and Tischler, 1989). The two most

important parameters are the target response ratio and the characteristic function.

They are denoted by P and i, respectively. In general, to put it in a broad sense,

the f6s are the scale factors magnitudes for the new design vector, and the 1&s

are the direction vectors for the magnitudes. The Figure showing the sequence of

operations is given in Figure 4.2.1.

First, P (target response ratio) parameters are computed for all the constraints

using the following expression (same as Eq 82).

,-- • i= 1,2,...,m (124)

If g, and gi are positive, then the following statements are valid. f, = 1 represents

the constraint surface, fi > 1 represents the feasible region, and fl < 1 represents

the infeasible region.

After arranging the constraints with the P's in ascending order, the constraints

with the lowest P values being the most critical are selected for the .tctive constraint

set (about 10 to 15) and denoted bys. Next, the characteristic function parameter
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p is computed for each of the selected . constraints and the objective functions.

The i parameter consists of two parts based on the sign of the individual terms in

the summation. This basically stores the gradient information of the constraints

and the objective function.

For all negative jtq terms

n

IN =--- 'i, j- =1,2,...,a +q (125.a)

For all positive pj terms

n

Isip= Iij j= 1,2,...,- + q (125.b)
5=1

where

j ,=N..zi j,+q (125.c)
zi

where zi is a vector containing the values of a selected constraints and the q objective

functions. Nq is the ordered gradient matrix corresponding to the selected active

constraint set a in the order of their P3 values which are sorted in ascending order

and derivatives of the objective functions with respect to the design variables.

To make the objective functions look like constraints, one may write

Fi(z) < T i = 1,2,...,q

where P• are pseudo targets for the objective functions. Two distinct cases are

identified for assigning the 8 values for the objective functions.
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Case 1:

When the design is away from the constraint surface,

then

6 + (126.a)
1+a

N /kN -kP (126.b)

1 AkN< AkP (126.c)

where k = -s + 1, a + 2, ... q, and #i is the target response ratio for the most violated

or most active constraint from the active constraint set a. The a is calculated using

the information provided from the corresponding characteristic function i for the

same selected constraint.

1Y (127.a)
/SI

=-, AIN I -NPIP (127.b)

a A < <iP (127.c)

where jul is the larger value of the positive (sIp) or negative (AiA) for the selected

constraint.

Case 2:

In the second case when the design is on the constraint boundary, the 8 pa-

rameter of the objective functions are weighed, and the objective function which

has the smallest P value is selected for scaling down. Then the objective function

selected is scaled down by multiplying or dividing the current values of the variables
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by a factor depending on whether the gradient of the objective function is positive

or negative with respect to that variable. The value of the factor is generally taken

as 0.8.

The next step is to calculate the scale factors. Scale factors A depend on the

values of the function characteristic parameters and target response ratios. The

procedure is as follows:

AiN ---- ( PN /N _ PiP (128.a)

or

Aip - (PO)*P IzjN < /jP (128.b)

The following conditions are used in constructing the scale factors matrix.

A,,=AiN /Sj<O '1
A,, = .Ž P!t ŽJ01 (129.a)

or

A, AiP P > 0
A,, = 1.0 < 0 # iN <PiP (129.b)

This results in a + q possible scale factors for each variable. The strategy in com-

pound scaling is to select a mix of the scale factors from various columns of the

scale factor table with the object of approaching the intersecting points of the con-

straints. The relevant scale factors are determined with the help of a scale factor

assignment procedure. The underlying concept is similar to pivoting for identifying

prominent variables. The scale factors assignment table is computed as follows

t,,=INjZ -Zi+PN ,ji < 0(
ti= 0 pq > 0 J qN Ž P3 P (130.a)
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or

tij =-jp Ai. > 0
tii = 0 /j •oi MAjN < j.P (130.b)

The values of the entries in the scale factor assignment table vary from zero to one.

Now all the information is available for the selection of an appropriate scale factor

for each variable from the list of a + q scale factors. The appropriate scale factor

for the ith variable is selected based on the following principles:

(i) From the scale factor assignment matrix select the largest entry in the ith row.

For Example: If tii is the largest entry in the scale factor assignment matrix,

then the appropriate scale factor for the ith variable is the A,, from the scale factor

matrix.

(ii) If there is more than one entry equal to the largest entry in that row, then

the appropriate scale factor corresponds to the smallest fli of the equal entries.

Now this process of selecting the appropriate scale factor is applied to all the

variables. The selected scale factor for the ith variable is denoted by ri. The

scaled variables for zi are computed by

Xine" = riziM i = 1,2...n (131)

The compound scaling algorithm simply drives the design to the intersection of

the constraints, if such an intersection exists. This can be illustrated well with an

example which consists of two design variables and two constraints for a bicriteria

optimization problem. The problem statement is as follows:
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Demonstration Problem

Minimize

F1 = 4zx + Z2 (132.a)

F2 "- 0.004
22 + 0.25zT (132.b)

Subject to

1.6 < 1.0 (133.a)
22 + 0.25zm -

g2• -- 0. 2 [ 3 + 2 02 ] < 1.0 (133.b)

3l X22+ 0.2521 -

Start with an initial design zo = (0.1,1.0) which are the lower bounds of the design

variables. It can be seen from Figure 4.2.2 that in one scaling the design reaches

the intersection of the two constraints gl and g2. This comes about because of

the resultant vector direction of the gradients of the two constraints, and the scale

factor is calculated as discussed above. At point A in Figure 4.2.2 it can be seen

that moving in the direction of objective function F 1 for minimization will violate

the constraints. Hence at point A the designs are scaled by a factor 0.8 with respect

to F 2 depending on the gradients of the second objective function. This is point B

in Figure 4.2.3. From point B the design moves to the intersection of gi, F1 , F2 to

point C shown in Figure 4.2.3. The dark highlighted curve shows the minimal curve

( Pareto optimum ). In this procedure the design moves into the feasible region and

then back to the constraint boundary.
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4.3 Reliability Criteria

In multiobjective optimization there are a number of Pareto optimal design:

which can be picked as an acceptable and "valid" design. Most decisions on the

choice of the "best" or "suitable" design are based on preferential decision making

where the decision maker already has set priorities in the objective functions- One

possible approach for selection of a "suitable" design could be done by probabilistic

methods. A reliability ba&ed procedure has definite advantages over a deterministic

design procedure.

A general approach for estimating the variance of structural response variables,

given the mean values and variances of system properties which are probabilistic

in nature, is outlined. Here the probabilistic properties of a system are viewed as

discrete random variables. The thickness of a plate or any design variable may vary

due to manufacturability or some other criteria, and hence can be characterized by

a mean value and a single value of the variance.

The statistical parameter of interest in the present work are the thicknesses of

the plates which are the design variables of the structure. The structural response

quantities that we are interested in are displacement, stress, and natural frequency.

The results from these calculations can be interpreted in may different ways. One

of the most important being that -he variance calculations generate a single scalar

quantity for each of the different parameters such as displacement at a location of

interest, stress at a critical region or system natural frequency. This makes it easier

in judging the behavior of the structure to the variance in the design variables.
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In the optimization problem the constraint function, gi(X), represents each

mode of malfunction or failure of the system. For given values of random variables

this function separates the space of random variables into safe and failure zones.

That is

gi(X) > 0 -- safe - space (134.a)

gi(X) < 0 -- failure - space (134.b)

where the boundary between these two regions, gi(X) = 0, is called a failure surface

or limit state function. If the joint probability density function of the random

variables, fx(z), is known, then the reliability measure associated with the Oth

constraint can be obtained as follows (Rao, 1984):

Ps = 4>0 fx(z)dx (135)

As the joint distribution of the random variables is rarely known and also the integral

evaluation is extremely difficult, approximations for the above integral have been

proposed by many researchers. Approximating Eq 135, the probability is calculated

as

P.i = 0(0i) (136)

where 0(.) is the standard normal probability distribution function, and qi is the

reliability index for the ith failure mode defined as

i (X) (137)

gi(X) is the mean value of the constraint, and oa(gi) is the standard deviation. These

are calculated as shown below;

A() -" gi(X) (138)
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n 8gi ) 2 2 11
O'gi= [ (-•!i)XO (139)

where n denotes the total number of design variables. The method for evaluating

qi1 , by expanding around the mean value of the random var.ables, is known as a

first-order second moment method (Nikolaidis and Burditiso, 1988).

For limit state functions that are not highly nonlinear, the probability of failure

can be approximated with good accuracy as

fi = (140.a)

or

Pi = 1- P (140.b)

The individual failure probabilities of each failure subsystem were combined to eval-

uate the system probability of failure. The exact evaluation of the failure probability

is a formidable task that requires knowledge of the joint probabilities corresponding

to all combinations of the failure modes.

Approximating the system failure probability by various bounds that can be

evaluated inexpensively, Ditlevsen's first order upper bound is selected for calcu-

lating system reliability (Yang and Nikolaidis, 1990). This is because in this for-

mulation the failure modes are completely independent, and the approximation is

valid for the range of values of P1 usually encountered in structural optimization

applications (Davidson, et.al, 1977). System probability can be defined as

P. Il~](I - P11 ) (141.a)
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If the values of the P1 i are small, higher order terms •re neglected, and the above

equation can be redefined as follows:

m
Pa = 1 - _Pfi (141.b)

3=1

I=I

where Pf is the system failure probability, Pfj is the probability of the individual

failure mode, and m denotes the number of failure modes.
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SECTION 5

NUMERICAL RESULTS AND DISCUSSIONS

In this section eight example problems are solved using the MCS technique.

5.1 Example 1: Two Bar Truss

The two bar truss shown in Figure 5.1.1 is considered for illustrating the MCS

approach (Rao, et.al., 1988). The cross sectional area of the member and the posi-

tion of joints 1 and 2 are treated as the design variables. The truss is assumed to

be symmetric about the y axis. The coordinates of joint 3 are held constant. The

weight of the truss and the displacement of joint 3 are considered as the objective

functions F1 and F2 , respectively. The stresses induced in the members are con-

strained to be less than the permissible stress, ao. In addition , lower bounds are

placed on the design variables. Thus the problem can be stated as:

Minimize

FI(X) = 2phz 2 vFl +T X 2 (142.a)

F2 (X) = Ph(l + z2)1.5(1 + X14)0.5 (142.b)
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Subject to

g1(X) = _(1 + ______+ - Co < 0 (143.a)2V2xl x2 -o0_0(13a

92(X) = P(z 1 - 1)(1 + X12)0.5 -0 < o (143.b)

where zx = X2= A E = Young's modulus, p = density of the material,

the lower bound on the first design variable is 0.1in, and the lower bound on the

second design variable is 1.0 in. The problem data is p=0.2 8 3 -•, h = 100 in,

Amin = 1 in2 , P = 10,000 lb ,E = 30 x 10, -- 00 = 20,000 Ib .The constraints
sn

2

are normalized by dividing the values with a00. The multicriteria optimization was

performed using the generalized scaling algorithm. The MCS generates a number of

optimal Pareto solutions. Which one of these designs is to be taken as the optimum

is decided by calculating the reliability criteria of the system. After elimination

based on reliability calculations of all the constraints, two possible designs Table

5.1.1, are obtained which need some discussion. Case 1: (iter no. 7) F 1 = 86.761

and F2 = 0.115. This design is in the feasible region with both the constraints

being inactive. Case 2: (iter no. 8) F 1 = 81.860 and F2 = 0.041. This design

also is in the feasible region with none of the constraints active. Using the system

reliability information the design at iteration 8 was taken as the optimum. The

corresponding optimum design variables are xi = 0.858 and z2 = 1.0972. Optimum

obtained by Rao are shown in comparison with the MCS results in Table 5.1.1. For

this example problem MCS did not perform well in generating some of the Pareto

optimal solutions, because the optima's do not lie on the constraint surface.
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5.2 Example 2: Production Planning Problem

Consider a production planning problem example (Osyczka,A., 1984) in which

product A is of high quality and product B is of lower quality. The profits are 4

and 5 dollars per product respectively. The best customer of the company wishes

to have as many as possible of type A product. Then the two objectives, (1) the

maximization of profit and (2) the maximum production of product A, should be

considered. Hence, the design variables are x1 = number of units of products A to

produce and z2 = number of units of product B to produce. Both products require

time in two departments. Product A requires 1 hour in the first department and

14 hours in the second department. Product B requires 1 hour in the first depart-

ment and 1 in the second department. The available hours in each department are

200 monthly. Furthermore, there is a maximum market potential of 150 units for

product B. These restrictions are the constraints. Hence, the optimization problem

can be written as follows:

Minimize

FI(X) = 1000.0 - 4x1 - 5z2 (144.a)

F2(X) = 1000.0 - xi (144.b)

Subject to

g1(X) = ZI + z2 < 200 (145.a)

g2 (X) = 11ZI + 3 < 200 (145.b)

g3(X) = z2 < 150 (145.c)
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X1,X2 -> 0 (145.d)

In this example as the problem is two-dimensional a graphical representation of

the problem formulation is shown in Figure 5.2.1 (a). In this space the inequality

constraints form a set of feasible sclutions. The Pareto set for the problem is shown

in Figure 5.2.1 (b), from which it can be seen that FP are the possible Pareto

solutions. The possible Pareto sets generated by the MCS are shown in Table 5.2.1.

It can be seen that the Pareto solutions generated by MCS follow the dark line

shown in Figure 5.2.1(b) which are the Pareto solutions for the problem. For this

particular problem the MCS generated almost the complete Pareto set, because the

problem was linear in nature and the Pareto solutions lie on the constraint surfaces.

5.3 Example 3 : Apartment Problem

This problem is taken from Eschenauer's etal., (1990) book. The problem is

stated as: maximize floor area and minimize the construction cost. The design

variables are: zl living room length, z2 hall length, 23 bedroom number three

length, z4 kitchen length, and z5 bedroom length.

The constraints are

4.28zl < 30 (146.a)

4.28zi > 15 (146.b)

3.05X4 < 12 (146.c)

3.05X4 >- 5 (146.d)
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1.83Z2 < 7.2 (146.e)

2.45z2 < 6.5 (146.J)

2.45X2 > 4.5 (146.g)

3.05x5 < 18 (146.h)

3.05x5 > 10 (146.i)

3.35X3 _ 18 (146.J)

3.35Z3 : 10 (146.k)

3.98X3 5 18 (146.1)

3.98z3 Ž 10 (146.m)

Z + z2 - 4 X- S=0.0 (146.n)

The above problem is a multicriteria linear programming formulation. Table 5.3.1

shows the Pareto-optimal solutions generated by MCS, and Figure 5.3.1 shows the

Pareto solutions generated by the constraint method. From both of these we can

see that MCS generated a partial Pareto-optimal set.

5.4 Example 4: Cantilever Beam with an End Moment

A beam of 10 in length and 1 in (Figure 5.4.1) wide is optimized for minimum

weight and maximum first natural frequency. The material properties are: E =

107 psi , i = 0.3, p = 0.1 b. The beam is subjected to an end moment of 450

Lb - in. The allowable normal stress (a.,o,) is ir, . = 30,000 psi. It is required

that the tip deflection be limited to 0.5 in. The lower bound on the thicknesses
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was 0.1 in. The beam is modelled into 20 elements as a 20 x I mesh. In the initial

design all the element thicknesses were 0.5 in. The initial weight was 0.5 lb, and

the corresponding natural frequency was w, = 999.08 L-d" For the optimization
sec

problem the total number of design variables was 20 (element thickness), and the

total number of constraints was 82 ( 42 displacements and 40 normal stresses).

The individual optimum obtained for the two objective functions are shown

in the Table 5.4.1. Using the constraint method the complete Pareto set for the

problem was generated. The feasible designs generated by the MCS algorithm

and the Pareto set generated by the constraint method are shown in Figure (5.4.2).

From the figure it can be inferred that the feasible designs generated by MCS follow

quite closely to the constraint method. As the optimization progresses utilizing

the sensitivity and constraint information , system reliability is calculated at each

iteration. From Table(5.4.1) it can be seen that the designs which need further

investigation are the ones from iteration 6, 8, 12, etc., since the reliability of the

whole structure is highest at these designs. Let us consider iteration number 6.

At this design the stress constraint at the tip element is active. The displacement

constraint is inactive. The optimum obtained for the two criteria are W = 0.4031b

and wi = 1123.363 ,-d-. For the design at iteration 8 the same constraint is active,#cc

but the displacement at the tip is lower. The optimum are W = 0.576 lb and
l= 185.205 M4. From the calculation of the reliability criteria for tLe system

see

we can select the design of iteration 6 as it has a higher system reliability than the

other Pareto optimal. Notice for a 9 % increase in weight a 31 % increase in wl was
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achieved. The optimal distribution for the design at iteration 6 and 8 is shown in

Table. 5.4.2.

5.5 Example 5 : Square Plate Clamped at the Edges

A square plate clamped at the edges is minimized for weight and for maximum

nodal displacement which for this problem happens to be at the center of the plate

(node 121). The plate is subjected to a uniform lateral load of 110.3 kPa. The

plate dimensions are 508 x 508 mm. The configuration is shown in Figure 5.5.1.

Only a quarter of the plate is considered due to symmetry. The material properties

are (Aluminum) E = 72.4 GPa, v = 0.3, p = 2.77 gm/cm3 . The plate was modelled

with 100 elements with a mesh size of 10 x 10. The maximum allowable normal

stress (oa, o',,) was a,,. = 82.7 MPa. The lower bound on the design variable was

1.0 MM.

The initial weight of the structure was L.36 kg, and the corresponding displace-

ment ( at node 121) was 3.15 mm with an uniform design of 7.62 mm. The total

number of design variables was 100 (element thickness), and the total number of

constraints was 200 (normal stresses in the x and y direction). No attempt was made

to reduce the number of design variables by linking. The MCS technique generated

a partial Pareto set with four designs which need further consideration. As the num-

ber of active constraints increases, the number of Pareto solutions decrease which

can be seen in this particular problem wherein the number of stresses reaching the

limit is always ten or more at any of the Pareto optimal designs. These designs are

shown in Table 5.5.1. The table also shows the corresponding system reliability for
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each particular design. From the table it can be seen that the desixn at iteration

11 has the highest reliability when compared to the others. The partial solution

set produced by MCS and the constraint method are plotted in Figure 5.5.2. The

constraint method shows the complete Pareto set. At the optimal design selected

(selected using reliability) the thickness distribution around the center of the plate

was high. Stresses at the regions about the central axis where double symmetry

.,f the structure exists were active. The thickness distribution at the optimum is

shown in Table 5.5.2. The optimum design is plotted in Figure 5.5.3.

5.6 Example 6 : Plate on Four Diagonal Supports

A rectangular steel plate of 10 in x 12 in (Figure 5.6.1) supported at four points

on the diagonals is the next problem solved. The plate is loaded along the central

and boundary lines of the plate. The problem is simple enough to analyze, however,

because of the overhang a complex saddle deformation pattern forms around the

support points (Prasad and Haftka, 1979). The material properties are Young's

Modulus, E = 28 x 107pai, Poisson's ratio, v = 0.3 and mass density, Pm = 7.71 x

10-0 4b"3. The loading configuration is shown in Table 5.6.1. The finite element

model consists of 49 elements ( a mesh of 7 x 7) ,as only one-quarter of the plate

is actually modeled due to symmetry. The diagonal support point is assumed to be

located at two fifths of the distance between the plate's corner and its center. A

total of 6 lb of non-structural mass was added to the structure. The lower bound

on the design variables was 0.02 in. The limits on displacement and stress were

0.02 in and 25000.0 psi, respectively. The initial design started from a feasible
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point and had a weight of 12.340 lb. The corresponding fundamental frequency was

wi = 5400.662 when all the design variable thicknesses were at 0.71 in.

The structural weight was minimized and the fundamental frequency was max-

imized subject to stress and displacement constraints. The total number of design

variables was 49 (element thickness), and the total number of constraints was 162

( 64 displacements and 98 normal stresses). Figure 5.6.2 shows the Pareto optimal

set generated by the constraint method, and the partial Pareto set generated by

the MCS algorithm. Table 5.6.2 gives the individual minima's and a few Pareto

optimal with their respective system reliability. Going through the Pareto optimal

solution the design at iteration no. 31 is selected as the best compromise design. At

this design the displacement at node 8 was active, and a few stresses were active.

None of the optimal thicknesses were at the lower bound. From this design it can be

seen that we have achieved a good compromise design between the two individual

minima's. Figure 5.6.3 gives the mode shapes corresponding to the first and second

frequencies. Table 5.6.3 gives the first five frequencies at the initial and optimum

designs. Table 5.6.4 gives the optimal thickness distribution. Figure 5.6.4 shows

the optimal design.

5.7 Example 7: Simply Supported Square Plate

A square plate simply supported at the edges with dimensions 10 in x 10 in

was optimized for minimum weight (Figure 5.7.1). The material properties are:

Young's modulus, E = 107psi, Poisson's ratio, v = 0.3 and mass density, pn =

2.587x 10 04. A uniformly distributed load of 100 psi was applied. The plate was
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modelled using 64 finite elements ( a mesh of 8 x 8). Double symmetry of the plate

was observed about the central axes and hence only a quarter model was considered.

Each element was controlled by an independent design variable. The objective was

to minimize the structural weight and the maximum nodal displacement (node

1) subject to normal stress constraints. The limits on the normal stresses were

30000.0 psi. A uniform plate with thickness equal to 0.5 in was taken as the initial

design, which resulted in an initial weight of 1.25 lb with a corresponding maximum

displacement (node 1) of 0.037 in and a design that was in the feasible region. The

lower bound on the design variables was 0.1 in. The MCS algorithm generated five

possible solutions. Table 5.7.1 shows the five possible designs and their respective

system reliability. The best possible design selected was the one at iteration 29.

Figure 5.7.2 plots the MCS algorithm and the constraint method Pareto solutions.

One will notice that for this particular problem MCS performed extremely well.

The optimal thickness distribution is shown in Table 5.7.2

5.8 Example 8 : Square Plate with Internal and Edge Supports

The final plate problem was a square plate with dimensions 12 in x 12 in (Figure

5.8.1). The plate is supported along its edges and also at internal locations to

represent a platform structure with several internal supports (a total of 88 simply

supported nodes out of 169 nodes). The plate can be considered to have been

made up of nine blocks. The material properties are those of Aluminum with

Young's Modulus, E = lO7psi, Poisson's ratio, v = 0.3, and mass density, pm =

2.587 x 1,0 2. The plate was modelled with 144 elements as a complete plate
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because of the inherent properties of the plate. The first mode shape of the plate

has a quarter symmetry. The second and the third modes have diagonal skewed

symmetry and the fourth mode has diagonal symmetry. Figure 5.8.3 shows the

mode shapes corresponding to the first and second natural frequencies. A total

of 24 lb of non-structural mass was added to the structure at all the free nodes.

At the initial design all the variables were taken as 1.0 in, which resulted in an

initial weight of 38.4 lb with the resulting fundamental frequency wa = 29816.384

"--. The plate was optimized for minimum weight and maximum fundamental;e-c

frequency subject to constraints on the second and third natural frequency. The

two constraints were posed as W2 Ž 35000.0 -d and W3 40000.0 L. A minimsee se

gauge value of 0.1 in was imposed on all the design variables. The initial design

was in the infeasible region. The Pareto optimal solutions for the problem using

the MCS algorithm and the Constraint method are plotted in Figure 5.8.2. Table

5.8.1 shows the possible designs with their system reliability. From table 5.8.1 the

best design selected is at iteration 38. Constraint two was active at the optimum.

At this design an increase of 1.2% in the weight brought about a 5 % increase in

the fundamental frequency. Table 5.8.2 gives the first four frequencies at the initial

and optimum designs. Table 5.8.3 shows the optimal thickness distribution values

for the optimal design. In general, elements at the ceni er of each block were thicker

than the others.
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Table 5.1.1

Two bar truss - Pareto optimum set

Iter No. Reliability Objective Func.

6 0.4996 [68.38, 0.328]

7 1.0000 [86.76, 0.115]

8 1.0000 [81.86, 0.041]

(a)

Weighting Game Theory Present
Quantity MethodQuantity Ratod ( Rao (1987) ApproachRao (1987)

X-x1  0.7635 0.7681 0.8586
X 2 1.0540 1.1408 1.0972

F=F 1  75.0595 81.4137 81.8609
F 0.0442 0.0408 0.0414

s 9747.6 8996.0 9194.0
S 2  1306.9 1180.1 698.0

Reliability 1.0000 1.0000 1.0000

(b)
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Table 5.3.1

Apartment Problem - Pareto optimum set

Pareto-optimal Solutions

Solution No. Area [m] 2 Costs [units]

1 79.06 1248.56

2 78.26 1212.12

3 73.89 1169.26

4 71.58 1133.54

5 65.08 1068.39

6 61.09 1028.46

Design Variable [m]

Solution No. X1 X 2 x 3 X 4 X 5

1 3.61 2.65 4.52 2.11 3.70

2 3.51 2.65 4.52 1.74 3.70

3 3.68 1.87 4.52 1.68 3.70

4 3.51 1.84 4.41 1.64 3.70

5 3.51 1.84 3.53 1.64 3.70

6 3.51 1.84 2.99 1.64 3.70
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Table 5.4.1
Pareto optimal solutions for Cantilever beam

No. System Reliability f (x) [f (x )' f (x2 )]

6 0.0111 [.403, 1123.361

8 0.0078 [.576, 1885.201

12 0.0078 [.591, 1956.00]

14 0.0078 [.586, 1984.00]

26 0.0078 [.574, 1973.36]

Minimize Wt. Maximize c1

Initial Subject to Subject to 1
Constraints Constraints

Wt.
(ib) 0.50 0.37 0.78

(o1 999.08 770.85 2375.79
rad/sec

System 0.0000 0.2086 0.0078
Reliability
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Table 5.4.2

Optimal design of Cantilever Beam

Element Iteration No. Iteration No.

Number 6 8

1 0.3000 0.3000

2 0.3000 0.3000
3 0.3000 0.3000
4 0.3000 0.3000

5 0.3000 0.3000
6 0.3000 0.3000

7 0.3027 0.3000
8 0.3784 0.4873
9 0.3784 0.6092

1 0 0.4730 0 6092
11 0.4730 0.7614
12 0.4730 0.7614
13 0.4730 0.7614

14 0.4730 0.7614

15 0.4730 0.8184
16 0.4730 0.8184

17 0.4730 0.8184

18 0.4730 0.8184

19 0.4730 0.8184

20 0.4730 0.8184
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Table 5.5.1
Pareto optimal solutions for the Clamped Square Plate

Iter No. System Reliability f (x) = [f (x), f 2 (x)
I

[Weight, Displacement]

11 1.0000 [1.2820, 1.7676]

19 0.9905 [1.2426, 1.91901

28 0.8518 [1.1820, 1.9792]

29 0.9918 [1.1838, 1.9717]

Initial Minimize Wt. Minimize maximum displacement
Subject to Subject to
Stress constraints Stress constraints

Wt. 1.36 0.99 11.06
(Kg)

u 3.1517 2.49 0.69

SystemSselii 0.0000 0.7628 1.0000
Reliability
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Table 5.5.2
Optimal design of Clamped square plate

El. No. Thickness Ele. No. Thickness
1 1.2517 51 8.9890
2 1.2517 52 9.8852
3 1.2517 53 4.6286
4 7.5306 54 1.5204
5 9.4372 55 1.41766 8.9890 56 1.00007 8.7843 57 1.4664
8 9.1833 58 5.15049 9.9334 59 7.3205

10 9.1833 60 17.401211 1.2517 61 8.7843
12 1.2517 62 10.6869
13 1.7093 63 4.449014 1.5636 64 1.4664
15 4.7489 65 1.4664
16 9.8852 66 1.4664
17 10.6869 67 4.4643
18 8.6516 68 4.748919 7.6358 69 14.9552
20 9.3592 70 20.4048
21 1.2517 71 9.1833
22 1.7093 72 8.651623 1.4676 73 8.422924 6.4603 74 3.5196
25 1.5636 75 10.2041
26 4.6286 76 5.1504
27 4.4490 77 4.748928 8.4229 78 1.0000
29 3.3411 79 14.9552
30 3.3411 80 32.0786
31 7.5306 81 9.9334
32 1.5636 82 7.635833 6.4603 83 3.3411
34 1.7722 84 3.3411
35 1.4664 85 5.1504
36 1.5204 86 7.320537 1.4664 87 14.955238 3.5196 88 14.955239 3.3411 89 1.0000
40 5.6592 90 29.474141 9.4372 91 9.183342 4.7489 92 9.3592
43 1.5636 93 3.3411
44 1.4664 94 5.659245 1.4697 95 9.2838
46 1.4176 96 17.401247 1.4664 97 20.4048
48 10.2041 98 32.078649 5.1504 99 29.4741
50 9.2838 100 13.9009
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Fig. 5.6.3 Mode shapes for Example 6
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Fig. 5.6.4 Optimal Design (Example 6)
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Table 5.6.2

Pareto optimal solutions for the Plate with
Four Diagonal supports

Iter No. System Reliability f W = If (x), f (x 2) ]

19 0.5357 [10.34, 3651.89]

22 0.5337 [10.44, 3793.82]

25 0.5459 [10.50, 3897.541

28 0.5394 [10.62, 4061.11]

31 0.9116 [10.26, 3725.741

34 0.4959 (10.29, 3788.21]

36 0.4631 [10.40, 3923.56]

38 0.4615 [10.49, 4033.871

Minimize Wt. Mximize (A
Initial Subject to Subject to

Constraints Constraints

(lb) 12.35 9.26 14.56

(01 5400.34 1924.00 8758.00
(rad/sec)

System 1.0000 0.3423 1.0000
Reliability
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Table 5.6.3
First Five Frequencies ( Example 6)

Initial Optimal

0o 5400.338 3672.200

S8157.842 4420.065
2

(03 13307.113 6790.055

(04 17350.319 8775.119

(0 19396.273 11241.834
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Table 5.6.4
Optimal design of Plate with four diagonal supports

Ele No. Thickness Ele. No. Thickness

1 0.5014 25 0.5034
2 0.5515 26 0.4932
3 0.5014 27 0.2222
4 0.5459 28 0.3949
5 0.5292 29 0.3151
6 0.5249 30 0.3268
7 0.5362 31 0.5456
8 0.7735 32 0.4857
9 0.7710 33 0.5081

10 0.7621 34 0.5612
11 0.6089 35 0.2866
12 0.6503 36 0.3151
13 0.5578 37 0.3279
14 0.5581 38 0.5106
15 0.5969 39 0.4027
16 0.7483 40 0.5081
17 0.8349 41 0.3083
18 0.6627 42 0.1296
19 0.4836 43 0.3397
20 0.5186 44 0.2075
21 0.5106 45 0.2561
22 0.4107 46 0.1050
23 0.3268 47 0.2566
24 0.8349 48 0.1481

49 0.1467
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Table 5.7.1

Pareto optimal solutions for square plate

simply supported at the edges

Iter No. System Reliability F(x) = (F (x), F2 (x)]
[ Weight, Displacement]

11 0.0247 [0.7119, 0.16081

17 0.0101 [0.6852, 0.1674]

23 0.0196 [0.6630, 0.1727]

29 0.0895 [0.6401, 0.17791

36 0.0211 [0.6167, 0.1836]

Initial Minimize Wt Minimize Maximum Displcment
Subject to Subject to
Stress constraints Stress constraints

Wt. 1.2500 0.5915 1.2500
(lb)

U
(in) 0.0372 0.2423 0.0372

System 1.0000 0.0010 1.0000
Reliability
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Table 5.7.2
Optimal design of simply supported square plate

Ele No. Thickness Ele. No. Thickness

1 0.2870 33 0.2709
2 0.3108 34 0.2353
3 0.3182 35 0.1829
4 0.3121 36 0.2176
5 0.2709 37 0.1260
6 0.1933 38 0.1554
7 0.1505 39 0.4918
8 0.1260 40 0.3061
9 0.3108 41 0.1933

10 0.2603 42 0.2173
11 0.3121 43 0.2139
12 0.2870 44 0.1933
13 0.2353 45 0.1554
14 0.2173 46 0.3958
15 0.1751 47 0.4918
16 0.i505 48 0.3627
17 0.3182 49 0.1505
18 0.3121 50 0.1751
19 0.2710 51 0.2419
20 0.3121 52 0.2531
21 0.1829 53 0.4918
22 0.2139 54 0.4918
23 0.2419 55 0.4918
24 0.1751 56 0.2531
25 0.3121 57 0.1260
26 0.2870 58 0.1505
27 0.3121 59 0.1751
28 0.1484 60 0.2273
29 0.2176 61 0.3061
30 0.1933 62 0.3627
31 0.2531 63 0.2531
32 0.2273 64 0.1333
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Table 5.8.1

Pareto optimal solutions for square plate
with internal and edge supports

Iter No. System Reliability F (x) = [F (x), F (x)]
[Weight, Fundamental Frequency]

38 0.9379 [42.88, 36461.201

29 0.9:.111 [43.65, 36859.021

28 0.9,10 [43.77, 37549.32]

24 0.9299 [43.82, 38906.14]

34 0.0212 [44.36, 39777.20]

Mimize Weight Maximize c
Initial Subject to Subject to

Constraints on Constraints on
_0 2 3 2' 3

Wt. 38.4 42.32 63.82
lb

( 1 29816.38 33404.12 43610.63
(tad/sec)

System 0.0000 0.0235 1.0000
Refiabafity
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Table 5.8.2

First Four natural frequencies

Minimze Wt. Maximize (0 Optimum
Subject to Subject to
constraints on constr 1ints on Design

(0 2' ('03 (0 2 9 03

33404.116 43610.631 36461.208

(0 36647.414 45184.092 37479.610
2

C0 39899.018 48042.382 40026.954
3

4 39975.613 52362.123 40539.290
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T ible 5.8.3
Optimal design of Plate with internal and edge supports

Ele. No. Thickness Ele No. Thickness Ele No. Thickness

1 1.5455 49 2.1182 97 2.0005
2 1.3769 50 1.7228 98 1.5278
3 0.9868 51 1.9478 99 0.6417
4 1.5432 52 1.7475 100 0.8290
5 1.3185 53 1.1854 101 2.5997
6 0.5840 54 1.5957 102 0.8326
7 0.5829 55 1.2392 103 0.8961
8 1.2392 56 0.7162 104 1.5637
9 0.6029 57 1.5035 105 0.7680

10 1. 5407 58 0.9267 106 0.9892
11 1.5407 59 1.7039 107 1.0407
12 0.6958 60 1.2638 108 1.7713
13 1.4602 61 0.8406 109 0.7697
14 1.4881 82 1.7226 110 1.86864
15 0.9866 63 1,9478 111 1.4870
16 1.5349 64 1,0395 112 1.5184
17 1.5358 65 1,3897 113 0.9401
18 1.5435 66 0.9089 114 1. 2647
19 1.4321 67 0,8087 115 0.8938
20 1.5532 68 1,4680 116 1.1508
21 1.5727 89 0,8833 117 0.4936
22 1.5380 70 1.0306 118 1.0234
23 1.3450 71 1.9909 119 1.1669
24 1.3450 72 1.1324 120 1.2182
25 1.6935 73, 0.6406 121 1.5895
26 1.8253 74 1.5135 122 1.7711
27 1.5105 75 0.8909 123 1.6871
28 0.8078 76 0.9013 124 1.3358
29 0.7034 77 1.4289 125 1.6359
30 0.6529 78 0.9847 126 1.6167
31 1.3526 79 0.9847 127 1.7806
32 1.5543 80 1.5178 128 1.6365
33 1.5497 81 0.7769 129 1.8328
34 1.6788 82 1.3558 130 1.4934
35 1.4394 83 1.5315 131 1.2482
36 0.6036 84 1.1109 132 1.0246
37 2.2286 85 2.1140 133 1.7956
38 1. 680 86 1.5389 134 1.8306
39 1.9858 87 0.9954 135 1.8308
40 1.063 88 1.8455 138 0.7917
41 2.2096 89 1.1092 137 1.1763
42 0.9300 90 1.2965 138 0.7624
43 0.6553 91 1.2857 139 0.7123
44 2.1413 92 0.7885 140 1.1629
45 O.5522 93 1.5548 141 1.4388
46 0.5609 94 1.0442 142 1.2911
47 1.2521 95 1.1451 143 1.2100
48 1.3595 96 1.1151 144 1.7864
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SECTION 6

CONCLUSIONS

A new technique for multiobjective optimization was developed. An effort was

made to modify the existing Generalized compound scaling algorithm for multiob-

jective optimization techniques. This technique was demonstrated on large scale

problems with more than one hundred design variables and above three handred

constraints. Objective functions which were linear as well as non-linear were used

for demonstration of the multiobjective algorithm. Complete Pareto solution sets

were generated for the problems using the constraint method for comparison with

the present approach. In most of the problems the MCS Pareto set followed quite

closely to the constraint method. The technique proved to be robust as well as

computationally efficient. The best compromis,! design was selected based on the

system reliability of the structure. This proved to be an efficient way for selecting

the best possible compromise solution. As in most structural optimization problems

the optimum lies on the constraint boundary of the active constraint ol at the inter-

section of the active constraints. This assumption was the basis in developing the

algorithm. Pareto optimal solutions also lie on the constraint surface, and since the

objectives are also treated as constraints, generating Pareto solutions was straight

forward.
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Some of the drawbacks of this method are that Pareto solutions are found

only when the solutions lie on the constraint boundary. If this is not the case,

then arbitrary solutions are generated which may or may not be Pareto optimal.

For some of the problems where one of the objective functions is highly non-linear

(frequency), the MCS generated solutions crossed over the constraint method curves

hence generating solutions which were not true Pareto optimum. This was seen

for Example 8 where the number of design variables was 144. This was not seen

for cases when weight and displacements were used as the conflicting objective

functions. On the whole when comparing MCS to the methods described in Section

1 (eg., constraint, weighting, NISE, global criterion methods) , the algorithm proved

to be reliable and robust requiring less computer resources to generate a Pareto

set. Validation of this technique on plate structures with displacement, stress,

and frequency functions (constraints or objectives) where the problems are highly

nonlinear demonstrated the algorithms capabilities.
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